1(i)	$\begin{aligned} & (-\mathbf{i}+16 \mathbf{j}+72 \mathbf{k})+(-80 \mathbf{k})=8 \mathbf{a} \\ & \mathbf{a}=\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Use of N2L. All forces present. Need at least the \mathbf{k} term clearly derived	2
(ii)	$\begin{aligned} & \mathbf{r}=4(\mathbf{i}-4 \mathbf{j}+3 \mathbf{k})+0.5 \times 16\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right) \\ & =3 \mathbf{i}+4 \mathbf{k} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of appropriate uvast or integration (twice) Correct substitution (or limits if integrated)	3
(iii)	$\sqrt{3^{2}+4^{2}}=5$ so 5 m	B1	FT their (ii) even if it not a displacement. Allow surd form	1
(iv)	$\arctan \frac{4}{3}$ $=53.130 \ldots \text { so } 53.1^{\circ} \text { (3 s. f.) }$	M1 A1	Accept $\arctan \frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use arcsin $4 / 5$ or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors) cao	2
				8

(i) either

Need \mathbf{j} cpt 0 so $18 t^{2}-1=0$
$\Rightarrow t^{2}=\frac{1}{18}$. Only one root as $t>0$
or
Establish sign change in \mathbf{j} cpt
Establish only one root

B1
B1

M1 Differentiate. Allow \mathbf{i} or \mathbf{j} omitted
E1 Clear explanation. Accept 'i cpt always there’ or equiv

A1

B1

M1

A1

M1 Need not solve
E1 Must establish only one of the two roots is valid

Award for these two expressions seen.
t properly eliminated. Accept any form and brackets missing
ca

2

3	(i)	$\mathbf{v}=\mathbf{u}+\mathbf{a} t$ Velocity $\mathbf{v}=\binom{2}{0}+t\binom{-1}{1} \mathbf{(}=\binom{2-t}{t} \mathbf{)}$ When $t=8, \mathbf{v}=\binom{-6}{8}$ speed $\sqrt{(-6)^{2}+8^{2}}=10 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 A1 [4]	May be implied by either of the next two answers but not the final answer. Evidence of use of vectors in question necessary. May be implied by the final answer Cao but condone no units Give SC2 for 10 without working
	(ii)	$\begin{aligned} & \mathbf{r}=\mathbf{r}_{0}+\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2} \\ & \mathbf{r}=\binom{0}{-2}+\binom{2}{0} \times 8+\frac{1}{2} \times\binom{-1}{1} \times 8^{2} \\ & \mathbf{r}=\binom{-16}{30} \end{aligned}$ Distance $=34 \mathrm{~m}$	M1 A1 A1 A1 [4]	Use of correct equation with substitution. Condone omission of \mathbf{r}_{0} Or equivalent equation Condone omission of \mathbf{r}_{0}. Follow through for their value of \mathbf{v} Cao but may be implied by a correct final answer. Allow for $35.77 \ldots$ from $\mathbf{r}=\binom{-16}{32}$ and $37.57 \ldots$ from $\mathbf{r}=\binom{-16}{34}$

4		mark	notes
(i)	When $t=1, \mathbf{r}=\binom{8}{10-2}=\binom{8}{8}$ $[8 \mathbf{i}+(10-2) \mathbf{j}=8 \mathbf{i}+8 \mathbf{j}]$ Bearing OP is 045°	B1 F1 2	Accept column or $a \mathbf{i}+b \mathbf{j}$ notation May be implied Accept 45°. Accept NE and northeast. Condone $\|\mathbf{r}\|$ given as well.
(ii)	$\mathbf{v}=\binom{8}{20 t-6 t^{2}}\left[8 \mathbf{i}+\left(20 t-6 t^{2}\right) \mathbf{j}\right]$ The \mathbf{i} cpt is always 8 so $\mathbf{v} \neq \mathbf{0}$ for any t	M1 A1 E1 3	Differentiating both components. Condone 1 error if clearly attempting differentiation. Must be a vector answer. Accept any correct argument e.g. based on \mathbf{i} cpt never 0 .
(iii)	$\begin{aligned} & \mathbf{a}=\binom{0}{20-12 t}[(20-12 t) \mathbf{j}] \\ & \mathbf{a}=\mathbf{0} \text { when } t=\frac{20}{12}=\frac{5}{3} \\ & \text { so } \frac{5}{3} \text { s }(1.67 \text { s }(3 \text { s. f. })) \end{aligned}$	M1 F1 B1 3	Differentiating as a vector. Condone 1 error if clearly attempting differentiation of their \mathbf{v}. FT their \mathbf{v}. cao. Condone obtained from scalar equation.
		8	

PhysicsAndMathsTutor.com

				5
5 (i)	$\begin{aligned} & \binom{12}{9}=\binom{2}{-3}+4 \mathbf{a} \\ & \text { so } \mathbf{a}=\binom{2.5}{3} \end{aligned}$	M1 A1	Us of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ If vector a seen, isw.	
(ii)	eit $\begin{aligned} & \mathbf{r}=\binom{-1}{2}+\binom{2}{-3} \times 4+\frac{1}{2} \mathbf{a} \times 4^{2} \\ & \mathbf{r}=\binom{27}{14} \text { so }\binom{27}{14} \mathrm{~m} \end{aligned}$ or	M1 A1 A1 M1 A1 A1	For use of $\mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ with their \mathbf{a}. Initial position may be omitted. FT their a. Initial position may be omitted. cao. Do not condone magnitude as final answer. Use of $\mathbf{s}=0.5 t(\mathbf{u}+\mathbf{v})$ Initial position may be omitted. Correct substitution. Initial position may be omitted. cao Do not condone mag as final answer. $\mathrm{SC} 2 \text { for }\binom{28}{12}$	
(iii)	Using N2L $\mathbf{F}=5 \mathbf{a}=\binom{12.5}{15} \text { so }\binom{12.5}{15} \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Use of $\mathbf{F}=m \mathbf{m}$ or $\mathbf{F}=m g \mathbf{m}$. FT their a only. Do not accept magnitude as final ans.	2
				7

6		Mark	Comment	Sub
(i)	$v_{x}=8-4 t$ $v_{x}=0 \Leftrightarrow t=2$ so at $t=2$	M1 A1 F1	either Differentiating or Finding ' u ' and ' a ' from x and use of $v=u+a t$ FT their $v_{x}=0$	3
(ii)	$\begin{aligned} & y=\int\left(3 t^{2}-8 t+4\right) \mathrm{d} t \\ & =t^{3}-4 t^{2}+4 t+c \\ & y=3 \text { when } t=1 \text { so } 3=1-4+4+c \\ & \text { so } c=3-1=2 \text { and } y=t^{3}-4 t^{2}+4 t+2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Integrating v_{y} with at least one correct integrated term. All correct. Accept no arbitrary constant. Clea evidence Clearly shown and stated	4
(iii)	$\begin{aligned} & \text { We need } x=0 \text { so } 8 t-2 t^{2}=0 \\ & \text { so } t=0 \text { or } t=4 \\ & t=0 \text { gives } y=2 \text { so } 2 \mathrm{~m} \\ & t=4 \text { gives } y=4^{3}-4^{3}+16+2=18 \text { so } 18 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	May be implied. Must have both Condone 2 j Condone 18j	4
(iv)	We need $v_{x}=v_{y}=0$ From above, $v_{x}=0$ only when $t=2$ so evaluate $v_{y}(2)$ $v_{y}(2)=0[(t-2)$ is a factor] so yes only at $t=2$ At $t=2$, the position is $(8,2)$ Distance is $\sqrt{8^{2}+2^{2}}=\sqrt{68} \mathrm{~m}$ (8.253 s.f.)	M1 M1 A1 B1 B1	either Recognises $v_{x}=0$ when $t=2$ or Finds time(s) when $v_{y}=0$ or States or implies $v_{x}=v_{y}=0$ Considers $v_{x}=0$ and $v_{y}=0$ with their time(s) $t=2$ recognised as only value (accept as evidence only $t=2$ used below). For the last 2 marks, no credit lost for reference to $t=\frac{2}{3}$. May be implied FT from their position. Accept one position followed through correctly.	5
(v)	$t=0,1$ give $(0,2)$ and (6, 3)	B1 B1 B1	At least one value $0 \leq t<2$ correctly calc. This need not be plotted Must be $x-y$ curve. Accept sketch. Ignore curve outside interval for t. Accept unlabelled axes. Condone use of line segments. At least three correct points used in $x-y$ graph or sketch. General shape correct. Do not condone use of line segments.	3
		19		

